Cedrela odorata is a native tree of economic importance, as its wood is highly demanded in the international market. In this work, the current and future distributions of C. odorata in Mexico under climate change scenarios were analyzed according to their optimal temperature ranges for seed germination. For the present distribution, 256 localities of the species' presence were obtained from the Global Biodiversity Information Facility (GBIF) database and modelled with MaxEnt. For the potential distribution, the National Center for Atmospheric Research model (CCSM4) was used under conservative and drastic scenarios (RCP2.6 and RCP8.5 Watts/m2, respectively) for the intermediate future (2050) and far future (2070). Potential distribution models were built from occurrence data within the optimum germination temperature range of the species. The potential distribution expanded by 5 and 7.8% in the intermediate and far future, respectively, compared with the current distribution. With the increase in temperature, adequate environmental conditions for the species distribution should be met in the central Mexican state of Guanajuato. The states of Chihuahua, Mexico, Morelos, Guerrero, and Durango presented a negative trend in potential distribution. Additionally, in the far future, the state of Chihuahua it is likely to not have adequate conditions for the presence of the species. For the prediction of the models, the precipitation variable during the driest month presented the greatest contribution. When the humidity is not limiting, the thermal climatic variables are the most important ones. Models based on its thermal niche for seed germination allowed for the identification of areas where temperature will positively affect seed germination, which will help maximize the establishment of plant populations and adaptation to different climate change scenarios.
Keywords: MaxEnt; Spanish cedar; cardinal temperatures; distribution model; global change; temperature thresholds.