Tramadol is one of the most commonly prescribed analgesic opioids in various pharmacopeias. Tramadol has been linked to abuse in recent clinical investigations. However, the behavioral effects and neural substrates of the drug have not been well characterized in preclinical studies. As a result, the present study investigated the effects of tramadol on behavioral sensitizations in rats. Its impacts on cellular and molecular alterations in the brain were also investigated. In conditioned place preference (CPP) paradigm, tramadol induced behavioral as well as motor sensitizations. These effects were dramatically reduced by intraperitoneal administration of naltrexone, an opioid receptor antagonist. Tramadol caused changes in several molecular markers (pERK1/2, Δ-FosB, PKCγ, PKMζ GAD67) in the anterior cingulate cortex, which could indicate an increase in excitation within this structure. Tramadol is demonstrated in the present study to be a reinforcing drug in rats, as it increased both behavioral and motor sensitizations. Tramadol's effects are most likely due to the high levels of excitation it causes in the brain, which is mostly caused by the activation of opioid receptors.
Copyright © 2023 Elsevier B.V. All rights reserved.