Introduction: Unnecessary laboratory testing contributes to patient morbidity and healthcare waste. Despite prior attempts at curbing such overutilization, there remains opportunity for improvement using novel data-driven approaches. This study presents the development and early evaluation of a clinical decision support tool that uses a predictive model to help providers reduce low-yield, repetitive laboratory testing in hospitalized patients.
Methods: We developed an EHR-embedded SMART on FHIR application that utilizes a laboratory test result prediction model based on historical laboratory data. A combination of semi-structured physician interviews, usability testing, and quantitative analysis on retrospective laboratory data were used to inform the tool's development and evaluate its acceptability and potential clinical impact.
Key results: Physicians identified culture and lack of awareness of repeat orders as key drivers for overuse of inpatient blood testing. Users expressed an openness to a lab prediction model and 13/15 physicians believed the tool would alter their ordering practices. The application received a median System Usability Scale score of 75, corresponding to the 75th percentile of software tools. On average, physicians desired a prediction certainty of 85% before discontinuing a routine recurring laboratory order and a higher certainty of 90% before being alerted. Simulation on historical lab data indicates that filtering based on accepted thresholds could have reduced ∼22% of repeat chemistry panels.
Conclusions: The use of a predictive algorithm as a means to calculate the utility of a diagnostic test is a promising paradigm for curbing laboratory test overutilization. An EHR-embedded clinical decision support tool employing such a model is a novel and acceptable intervention with the potential to reduce low-yield, repetitive laboratory testing.
Keywords: Clinical decision support; Healthcare utilization; Laboratory information systems; Laboratory testing; Prediction algorithms.
Copyright © 2023 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.