A 3D-Printed Proton Pseudocapacitor with Ultrahigh Mass Loading and Areal Energy Density for Fast Energy Storage at Low Temperature

Adv Mater. 2023 Jun;35(23):e2209963. doi: 10.1002/adma.202209963. Epub 2023 Apr 27.

Abstract

The sluggish ionic transport in thick electrodes and freezing electrolytes has limited electrochemical energy storage devices in lots of harsh environments for practical applications. Here, a 3D-printed proton pseudocapacitor based on high-mass-loading 3D-printed WO3 anodes, Prussian blue analog cathodes, and anti-freezing electrolytes is developed, which can achieve state-of-the-art electrochemical performance at low temperatures. Benefiting from the cross-scale 3D electrode structure using a 3D printing direct ink writing technique, the 3D-printed cathode realizes an ultrahigh areal capacitance of 7.39 F cm-2 at a high areal mass loading of 23.51 mg cm-2 . Moreover, the 3D-printed pseudocapacitor delivers an areal capacitance of 3.44 F cm-2 and excellent areal energy density (1.08 mWh cm-2 ). Owing to the fast ion kinetics in 3D electrodes and the high ionic conductivity of the hybrid electrolyte, the 3D-printed supercapacitor delivers 61.3% of the room-temperature capacitance even at -60 °C. This work provides an effective strategy for the practical applications of energy storage devices with complex physical structure at extreme temperatures.

Keywords: 3D printing; anti-freezing electrolytes; high areal energy density; proton pseudocapacitors; thick electrodes.