Aim: To explore associations between artificial intelligence (AI)-based fluid compartment quantifications and 12 months visual outcomes in OCT images from a real-world, multicentre, national cohort of naïve neovascular age-related macular degeneration (nAMD) treated eyes.
Methods: Demographics, visual acuity (VA), drug and number of injections data were collected using a validated web-based tool. Fluid compartment quantifications including intraretinal fluid (IRF), subretinal fluid (SRF) and pigment epithelial detachment (PED) in the fovea (1 mm), parafovea (3 mm) and perifovea (6 mm) were measured in nanoliters (nL) using a validated AI-tool.
Results: 452 naïve nAMD eyes presented a mean VA gain of +5.5 letters with a median of 7 injections over 12 months. Baseline foveal IRF associated poorer baseline (44.7 vs 63.4 letters) and final VA (52.1 vs 69.1), SRF better final VA (67.1 vs 59.0) and greater VA gains (+7.1 vs +1.9), and PED poorer baseline (48.8 vs 57.3) and final VA (55.1 vs 64.1). Predicted VA gains were greater for foveal SRF (+6.2 vs +0.6), parafoveal SRF (+6.9 vs +1.3), perifoveal SRF (+6.2 vs -0.1) and parafoveal IRF (+7.4 vs +3.6, all p<0.05). Fluid dynamics analysis revealed the greatest relative volume reduction for foveal SRF (-16.4 nL, -86.8%), followed by IRF (-17.2 nL, -84.7%) and PED (-19.1 nL, -28.6%). Subgroup analysis showed greater reductions in eyes with higher number of injections.
Conclusion: This real-world study describes an AI-based analysis of fluid dynamics and defines baseline OCT-based patient profiles that associate 12-month visual outcomes in a large cohort of treated naïve nAMD eyes nationwide.
© Author(s) (or their employer(s)) 2024. No commercial re-use. See rights and permissions. Published by BMJ.