Fibroblast growth factor 9 (FGF9) modulates cell proliferation, differentiation and motility for development and tissue repair in normal cells. Growing evidence shows that abnormal activation of FGF9 signaling is associated with tumor malignancy. We have previously reported that FGF9 increases MA-10 mouse Leydig tumor cell proliferation, in vitro, and tumor growth, in vivo. Also, FGF9 promotes the tumor growth and liver metastasis of mouse Lewis lung cancer cells, in vivo. However, the effects of FGF9 in the early stage of tumorigenesis remains elusive. In this study, TM3 mouse Leydig progenitor cells, that are not tumorigenic in immunocompromised mice, were used as a model cell line to investigate the role of FGF9 in tumorigenesis. The results demonstrated that FGF9 significantly induced cell proliferation and activated the MAPK, PI3K and PLCγ signaling pathways in TM3 cells. The percentage of the cell number in G1 phase was reduced and that in S and G2/M phases was increased after FGF9 stimulation in TM3 cells. Cyclin D1, cyclin A1, CDK2, CDK1, and p21 expressions and the phosphorylation level of Rb were all induced in FGF9-treated TM3 cells. In addition, FGF9 increased the expression of FGF receptor 1-4 in TM3 cells, suggesting the positive feedback loop between FGF9 and FGFRs. Furthermore, in the allograft mouse model, FGF9 promoted the tumorigenesis of TM3 cells characterized by higher expression of tumor markers, such as tumor necrosis factor alpha (TNFα) and α-fetoprotein (AFP), in the subcutaneously inoculated TM3 cell tissue. Conclusively, FGF9 induced cell cycle to increase cell proliferation of TM3 cells through FAK, MAPK, PI3K/Akt and PLCγ signaling pathways, in vitro, and promoted the tumorigenesis of TM3 cell allograft tissue, in vivo, which is a potential marker for tumor as well as a target for cancer therapeutic strategies.
Keywords: FGF9; MAPK; PI3K/Akt; TM3 Leydig progenitor cells; cell cycle; cell proliferation; tumorigenesis.
AJCR Copyright © 2022.