In the rapidly urbanizing region of West Africa, Aedes mosquitoes pose an emerging threat of infectious disease that is compounded by limited vector surveillance. Citizen science has been proposed as a way to fill surveillance gaps by training local residents to collect and share information on disease vectors. Understanding the distribution of arbovirus vectors in West Africa can inform researchers and public health officials on where to conduct disease surveillance and focus public health interventions. We utilized citizen science data collected through NASA's GLOBE Observer mobile phone application and data from a previously published literature review on Aedes mosquito distribution to examine the contribution of citizen science to understanding the distribution of Ae. aegypti in West Africa using Maximum Entropy modeling. Combining citizen science and literature-derived observations improved the fit of the model compared to models created by each data source alone but did not alleviate location bias within the models, likely due to lack of widespread observations. Understanding Ae. aegypti distribution will require greater investment in Aedes mosquito surveillance in the region, and citizen science should be utilized as a tool in this mission to increase the reach of surveillance.
Keywords: Aedes; GLOBE Observer; Maximum Entropy; West Africa; citizen science; mosquito distribution; niche modeling.