CT-radiomics and clinical risk scores for response and overall survival prognostication in TACE HCC patients

Sci Rep. 2023 Jan 11;13(1):533. doi: 10.1038/s41598-023-27714-0.

Abstract

We aimed to identify hepatocellular carcinoma (HCC) patients who will respond to repetitive transarterial chemoembolization (TACE) to improve the treatment algorithm. Retrospectively, 61 patients (mean age, 65.3 years ± 10.0 [SD]; 49 men) with 94 HCC mRECIST target-lesions who had three consecutive TACE between 01/2012 and 01/2020 were included. Robust and non-redundant radiomics features were extracted from the 24 h post-embolization CT. Five different clinical TACE-scores were assessed. Seven different feature selection methods and machine learning models were used. Radiomics, clinical and combined models were built to predict response to TACE on a lesion-wise and patient-wise level as well as its impact on overall-survival prognostication. 29 target-lesions of 19 patients were evaluated in the test set. Response rates were 37.9% (11/29) on the lesion-level and 42.1% (8/19) on the patient-level. Radiomics top lesion-wise response prognostications was AUC 0.55-0.67. Clinical scores revealed top AUCs of 0.65-0.69. The best working model combined the radiomic feature LargeDependenceHighGrayLevelEmphasis and the clinical score mHAP_II_score_group with AUC = 0.70, accuracy = 0.72. We transferred this model on a patient-level to achieve AUC = 0.62, CI = 0.41-0.83. The two radiomics-clinical features revealed overall-survival prognostication of C-index = 0.67. In conclusion, a random forest model using the radiomic feature LargeDependenceHighGrayLevelEmphasis and the clinical mHAP-II-score-group seems promising for TACE response prognostication.

MeSH terms

  • Aged
  • Carcinoma, Hepatocellular* / drug therapy
  • Carcinoma, Hepatocellular* / therapy
  • Chemoembolization, Therapeutic* / methods
  • Humans
  • Liver Neoplasms* / drug therapy
  • Liver Neoplasms* / therapy
  • Male
  • Retrospective Studies
  • Risk Factors
  • Tomography, X-Ray Computed / methods