Real-time radial reconstruction with domain transform manifold learning for MRI-guided radiotherapy

Med Phys. 2023 Apr;50(4):1962-1974. doi: 10.1002/mp.16224. Epub 2023 Jan 27.

Abstract

Background: MRI-guidance techniques that dynamically adapt radiation beams to follow tumor motion in real time will lead to more accurate cancer treatments and reduced collateral healthy tissue damage. The gold-standard for reconstruction of undersampled MR data is compressed sensing (CS) which is computationally slow and limits the rate that images can be available for real-time adaptation.

Purpose: Once trained, neural networks can be used to accurately reconstruct raw MRI data with minimal latency. Here, we test the suitability of deep-learning-based image reconstruction for real-time tracking applications on MRI-Linacs.

Methods: We use automated transform by manifold approximation (AUTOMAP), a generalized framework that maps raw MR signal to the target image domain, to rapidly reconstruct images from undersampled radial k-space data. The AUTOMAP neural network was trained to reconstruct images from a golden-angle radial acquisition, a benchmark for motion-sensitive imaging, on lung cancer patient data and generic images from ImageNet. Model training was subsequently augmented with motion-encoded k-space data derived from videos in the YouTube-8M dataset to encourage motion robust reconstruction.

Results: AUTOMAP models fine-tuned on retrospectively acquired lung cancer patient data reconstructed radial k-space with equivalent accuracy to CS but with much shorter processing times. Validation of motion-trained models with a virtual dynamic lung tumor phantom showed that the generalized motion properties learned from YouTube lead to improved target tracking accuracy.

Conclusion: AUTOMAP can achieve real-time, accurate reconstruction of radial data. These findings imply that neural-network-based reconstruction is potentially superior to alternative approaches for real-time image guidance applications.

Keywords: MRI; deep learning; radiotherapy.

MeSH terms

  • Humans
  • Image Processing, Computer-Assisted / methods
  • Lung Neoplasms* / diagnostic imaging
  • Lung Neoplasms* / pathology
  • Lung Neoplasms* / radiotherapy
  • Magnetic Resonance Imaging* / methods
  • Motion
  • Neural Networks, Computer
  • Retrospective Studies