Cholangiocarcinoma (CCA) is an aggressive biliary epithelial tumor with limited therapeutic options and poor prognosis. Curcumin is a promising active natural compound with several anti-cancer properties, though its clinical uses remain hindered due to its poor bioavailability. We recently synthesized curcumin analogs with multifunctional pharmacological and bioactivities with enhanced bioavailability. Among these novel curcumin analogs, WZ26 is a representative molecule. However, the anti-tumor effect of WZ26 against CCA is unclear. In this study, we evaluated the anti-tumor effect of WZ26 in both CCA cells and CCA xenograft mouse model. The underlying molecular anti-cancer mechanism of WZ26 was also studied. Our results show that WZ26 significantly inhibited cell growth and induced mitochondrial apoptosis in CCA cell lines, leading to significant inhibition of tumor growth in xenograft tumor mouse model. Treatment of WZ26 increased reactive oxygen species (ROS) generation, subsequently decreased mitochondrial membrane potential and inhibited the phosphorylation of signal transducer and activator of transcription 3 (STAT3), thereby inducing G2/M cell cycle arrest and cell apoptosis. Pretreatment of N-acetyl cysteine (NAC), an antioxidant agent, could fully reverse the WZ26-induced ROS-mediated changes in CCA cells. Our findings provide experimental evidence that curcumin analog WZ26 could be a potential candidate against CCA via enhancing ROS induction and inhibition of STAT3 activation.
Keywords: Curcumin analog; ROS; STAT3; cholangiocarcinoma; mitochondrial apoptosis.