Objective: 11-oxygenated androgens significantly contribute to the circulating androgen pool. Understanding the physiological variation of 11-oxygenated androgens and their determinants is essential for clinical interpretation, for example, in androgen excess conditions. We quantified classic and 11-oxygenated androgens in serum and saliva across the adult age and body mass index (BMI) range, also analyzing diurnal and menstrual cycle-dependent variation.
Design: Cross-sectional. Morning serum samples were collected from 290 healthy volunteers (125 men, 22-95 years; 165 women, 21-91 years). Morning saliva samples were collected by a sub-group (51 women and 32 men). Diurnal saliva profiles were collected by 13 men. Twelve women collected diurnal saliva profiles and morning saliva samples on 7 consecutive days during both follicular and luteal menstrual cycle phases.
Methods: Serum and salivary steroids were quantified by liquid chromatography-tandem mass spectrometry profiling assays.
Results: Serum classic androgens decreased with age-adjusted BMI, for example, %change kg/m2 for 5α-dihydrotestosterone: men -5.54% (95% confidence interval (CI) -8.10 to -2.98) and women -1.62% (95%CI -3.16 to -0.08). By contrast, 11-oxygenated androgens increased with BMI, for example, %change kg/m2 for 11-ketotestosterone: men 3.05% (95%CI 0.08-6.03) and women 1.68% (95%CI -0.44 to 3.79). Conversely, classic androgens decreased with age in both men and women, while 11-oxygenated androgens did not. Salivary androgens showed a diurnal pattern in men and in the follicular phase in women; in the luteal phase, only 11-oxygenated androgens showed diurnal variation.
Conclusions: Classic androgens decrease while active 11-oxygenated androgens increase with increasing BMI, pointing toward the importance of adipose tissue mass for the activation of 11-oxygenated androgens. Classic but not 11-oxygenated androgens decline with age.
Keywords: 11-oxygenated androgens; body mass index; liquid chromatography–tandem mass spectrometry; salivary steroids; serum steroids.
© The Author(s) 2023. Published by Oxford University Press on behalf of (ESE) European Society of Endocrinology.