Controlling aspects of the μ2 -X- bridging anion in the metal-organic framework Ga-MIL-53 [GaX(bdc)] (X- =(OH)- or F- , bdc=1, 4-benzenedicarboxylate) is shown to direct the temperature at which thermally induced breathing transitions of this framework occur. In situ single crystal X-ray diffraction studies reveal that substituting 20 % of (OH)- in [Ga(OH)(bdc)] (1) for F- to produce [Ga(OH)0.8 F0.2 (bdc)] (2) stabilises the large pore (lp) form relative to the narrow pore (np) form, causing a well-defined decrease in the onset of the lp to np transition at higher temperatures, and the adsorption/desorption of nitrogen at lower temperatures through np to lp to intermediate (int) pore transitions. These in situ diffraction studies have also yielded a more plausible crystal structure of the int-[GaX(bdc)] ⋅ H2 O phases and shown that increasing the heating rate to a flash heating regime can enable the int-[GaX(bdc)] ⋅ H2 O to lp-[GaX(bdc)] transition to occur at a lower temperature than np-[GaX(bdc)] via an unreported pathway.
Keywords: MIL-53; breathing; flash heating; metal-organic framework; thermoresponsive behaviour.
© 2023 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.