Accumulating evidence has indicated the importance of microRNAs (miRs) in the biology of human malignancies by targeting multiple signaling pathways and different Messenger RNA transcripts. Despite conflicting information and controversial roles in diverse cancers, miR-29 has been mostly characterized as a tumor suppressor in breast cancer (BC). Several signaling axes, including TIMP3/STAT1/FOXO1, GATA3-miR-29b, and EZH2-miR-29b/miR-30d-LOXL4 are controlled, at least partially, by miR-29 family members to suppress proliferation, invasion, and metastasis of BC cells. In contrast, some other studies showed that miR-29 is notably elevated in the serum/tissue of BC patients and triggers migration and metastasis by targeting various genes and transcription factors such as tristetraprolin, N-myc interactor, and ten-eleven translocation 1. This disagreement can be explained by the fact that miR-29 family members have a variety of regulatory roles depending on their environment and signaling pathways. Long non-coding RNAs also can modulate miR-29 expression in BC. We summarized recent discoveries regarding the important value of the miR-29 family in BC, focusing on the effects of miR-29 up/down-regulation in different subtypes of BC. We also explored the effects of miR-29 in BC initiation and progression, invasion, and therapy resistance.
Keywords: Breast cancer; MicroRNA; Oncogene.
Copyright © 2023 Elsevier B.V. All rights reserved.