Long noncoding RNA uc007nnj.1 mediates neuronal death induced by retinal ischemia/reperfusion in mice via the miR-155-5p/Tle4 axis

Mol Med. 2023 Jan 18;29(1):9. doi: 10.1186/s10020-022-00591-5.

Abstract

Background: Retinal ganglion cells (RGCs) apoptosis is a vital manifestation of retinal ischemia/reperfusion (I/R) injury, yet the underlying mechanisms are not well understood. The contribution of long noncoding RNAs (lncRNAs) to this cellular process is currently being explored. Based on a lncRNA chip assay, we aimed to investigate the role of lncRNA uc007nnj.1 in the pathological process of ischemia-induced RGCs apoptosis.

Methods: Hank's balanced salt solution containing 10 µM antimycin A and 2 µM calcium ionophore for 2 h to construct an ischemic model in RGCs, and elevation of intraocular pressure to 120 mm Hg for 1 h was used to construct a mouse model of retinal I/R injury.

Results: In this study, lncRNA uc007nnj.1 was highly upregulated in response to I/R injury in RGCs and mouse retinas. In addition, lncRNA uc007nnj.1 knockdown reduced retinal neuronal cell apoptosis in vitro and in vivo and significantly improved retinal function.

Discussion: Mechanistically, the results demonstrated that lncRNA uc007nnj.1 acts as ceRNA competitively binding miR-155-5p, thereby enhancing the expression levels of Tle4, thus aggravating ischemia-related apoptosis in RGCs.

Conclusions: Finally, our study identifies the lncRNA uc007nnj.1/miR-155-5p/Tle4 axis as a potential target for the prevention of I/R-induced retinal neuronal death.

Keywords: Apoptosis; I/R; RGCs; lncRNA uc007nnj.1; miR-155-5p.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis / genetics
  • Ischemia
  • Mice
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • RNA, Long Noncoding* / genetics
  • RNA, Long Noncoding* / metabolism
  • Reperfusion
  • Reperfusion Injury* / metabolism
  • Repressor Proteins

Substances

  • RNA, Long Noncoding
  • MicroRNAs
  • Tle4 protein, mouse
  • Repressor Proteins
  • Mirn155 microRNA, mouse