Single-cell RNA-seq unveils critical regulators of human FOXP3+ regulatory T cell stability

Sci Bull (Beijing). 2020 Jul 15;65(13):1114-1124. doi: 10.1016/j.scib.2020.01.002. Epub 2020 Jan 8.

Abstract

The heterogeneity and plasticity of T lymphocytes is critical for determining immune response outcomes. Functional regulatory T (Treg) cells are commonly characterized by stable FOXP3 expression and have reported to exhibit heterogeneous phenotypes under inflammatory conditions. However, the interplay between inflammation and Treg cell suppressive activity still remains elusive. Here, we utilized single-cell RNA sequencing to investigate how human Treg cells respond to the pro-inflammatory cytokine interleukin-6 (IL-6). We observed that Treg cells divided into two subpopulations after IL-6 stimulation. TIGIT- unstable Treg cells lost FOXP3 expression and gained an effector-like T cell phenotype, whereas TIGIT+ Treg cells retained robust suppressive function. Single cell transcriptome analysis revealed a spectrum of cellular states of IL-6-stimulated Treg cells and how cytochrome P450 family 1 subfamily A member 1 (CYP1A1) is a crucial regulator of Treg cell suppressive capability and stability. CYP1A1-deficient human Treg cells developed a Th17-like phenotype after IL-6 stimulation. Our findings implicate CYP1A1 as a previously unidentified regulator of Treg cells that may have target potential for clinical application for biotherapies.

Keywords: Cytochrome P450 1A1; Heterogeneity; Inflammation; Interleukin-6; Treg cell; scRNA-seq.