A large number of RNA viruses have been discovered in most insect orders using high-throughput sequencing (HTS) and advanced bioinformatics methods. In this study, an RNA virome of the grasshopper was systematically identified in Atractomorpha sinensis (Orthoptera: Pyrgomorphidae), an important agricultural pest known as the pink-winged grasshopper. These insect viruses were classified as the nege-like virus, iflavirus, ollusvirus, and chu-like virus using HTS and phylogenetic analyses. Meanwhile, the full sequences of four novel RNA viruses were obtained with RACE and named Atractomorpha sinensis nege-like virus 1 (ASNV1), Atractomorpha sinensis iflavirus 1 (ASIV1), Atractomorpha sinensis ollusvirus 1 (ASOV1), and Atractomorpha sinensis chu-like virus 1 (ASCV1), respectively. Moreover, the analysis of virus-derived small interfering RNAs showed that most of the RNA viruses were targeted by the host antiviral RNA interference pathway. Moreover, our results provide a comprehensive analysis on the RNA virome of A. sinensis.
Keywords: Atractomorpha sinensis; RNA interference pathway; RNA virome; grasshopper; high-throughput sequencing.