Most patients with senile osteoporosis (SOP) are severely deficient in bone mass, and treatments using bone resorption inhibitors, such as bisphosphonates, have shown limited efficacy. Small-molecule osteogenesis-promoting drugs are required to improve the treatment for this disease. Previously, we demonstrated that a compound with a benzofuran-like structure promoted bone formation by upregulating BMP-2, and it exhibited a therapeutic effect in SAMP-6 mice, glucocorticoid-induced osteoporosis rats, and ovariectomized rats. In this study, aged C57 and SAMP-6 mice models were used to investigate the therapeutic and preventive effects of compound 125 on SOP. scRNA-seq analysis showed that BMP-2 upregulation is the mechanism through which 125 accelerates bone turnover and increases the proportion of osteoblasts. We evaluated the structure-activity relationship of the candidate drugs and found that the derivative I-9 showed significantly higher efficacy than 125 and teriparatide in the zebrafish osteoporosis model. This study provides a foundation for the development of SOP drugs.