Deep Feature Engineering in Colposcopy Image Recognition: A Comparative Study

Bioengineering (Basel). 2023 Jan 12;10(1):105. doi: 10.3390/bioengineering10010105.

Abstract

Feature fusion techniques have been proposed and tested for many medical applications to improve diagnostic and classification problems. Specifically, cervical cancer classification can be improved by using such techniques. Feature fusion combines information from different datasets into a single dataset. This dataset contains superior discriminant power that can improve classification accuracy. In this paper, we conduct comparisons among six selected feature fusion techniques to provide the best possible classification accuracy of cervical cancer. The considered techniques are canonical correlation analysis, discriminant correlation analysis, least absolute shrinkage and selection operator, independent component analysis, principal component analysis, and concatenation. We generate ten feature datasets that come from the transfer learning of the most popular pre-trained deep learning models: Alex net, Resnet 18, Resnet 50, Resnet 10, Mobilenet, Shufflenet, Xception, Nasnet, Darknet 19, and VGG Net 16. The main contribution of this paper is to combine these models and then apply them to the six feature fusion techniques to discriminate various classes of cervical cancer. The obtained results are then fed into a support vector machine model to classify four cervical cancer classes (i.e., Negative, HISL, LSIL, and SCC). It has been found that the considered six techniques demand relatively comparable computational complexity when they are run on the same machine. However, the canonical correlation analysis has provided the best performance in classification accuracy among the six considered techniques, at 99.7%. The second-best methods were the independent component analysis, least absolute shrinkage and the selection operator, which were found to have a 98.3% accuracy. On the other hand, the worst-performing technique was the principal component analysis technique, which offered 90% accuracy. Our developed approach of analysis can be applied to other medical diagnosis classification problems, which may demand the reduction of feature dimensions as well as a further enhancement of classification performance.

Keywords: cervical cancer; deep learning structures; disease discrimination accuracy; feature fusion; feature selection; performance comparisons; support vector machine.

Grants and funding

This research received no external funding.