Background: Chemoprevention plays an important role in malaria control strategy. Perennial malaria chemoprevention (PMC) using sulfadoxine/pyrimethamine (SP) is a WHO-approved strategy to combat malaria in young children and may lead to drug pressure. Introducing SP-PMC may therefore be compromised due to the emergence of Plasmodium falciparum resistant to SP, particularly mutation at K540E of the dihydropteroate synthase (dhps) gene. Molecular surveillance of resistance markers can support assessment of antimalarial efficacy and effectiveness. High prevalence of 540E is associated with reduced effectiveness of SP, and areas with more than 50% prevalence are considered unsuitable for intermittent preventative treatment in pregnancy (IPTp) implementation. Assessing 540E prevalence is an important undertaking before implementation of SP-PMC.
Methods: We conducted a rapid surveillance of dhps-540E to assess the suitability of SP as PMC in field studies from Ebonyi and Osun states in Nigeria. We used an in-house developed amplicon deep-sequencing method targeting part of the dhps gene.
Results: Our data reveal that 18.56% of individuals evaluated carried the 540E mutation mixed with the WT K540. Mutant variant 540E alone was not found, and 80% of isolates harboured only WT (K540). Clonal analysis of the sequencing data shows a very low proportion of 540E circulating in both states.
Conclusions: Our data show that both states are suitable for SP-PMC implementation and, based on this finding, SP-PMC was implemented in Osun in 2022. Continuous monitoring of 540E will be required to ensure the chemoprevention effectiveness of SP in Nigeria.
© The Author(s) 2023. Published by Oxford University Press on behalf of British Society for Antimicrobial Chemotherapy.