A Non Expected Alternative Ni(0) Species in the Ni-Catalytic Aldehyde and Alcohol Arylation Reactions Facilitated by a 1,5-Diaza-3,7-diphosphacyclooctane Ligand

Chemistry. 2023 May 16;29(28):e202300193. doi: 10.1002/chem.202300193. Epub 2023 Mar 30.

Abstract

For decades there were many attempts to dispense with stoichiometric amounts of metal reagents for the synthesis of secondary alcohols. In 2021, the synthetic results of Newman and collaborators pioneered a synthesis still with metals, but not as reactants. Instead, they serverd as catalytic engines. Here we present a description by means of Density Functional Theory calculations of how this process can occur, and an attempt is made to shed light on the mechanism that facilitates the attainment of secondary alcohols, emphasizing the eternal cross-coupling debate of whether the catalytically active species is Ni(0) or they are really taking shortcuts following the course of Ni(II). Effective Orbital analyses give a clear picture. Furthermore, this paper provides insight not only into the nature of the ligands of the metal catalyst but also the role of the base.

Keywords: DFT calculations; Ni(0); nickel; reaction mechanism; secondary alcohol.