In situ synthesis of two-dimensional graphene-like nickel-molybdenum nitride as efficient electrocatalyst towards water-splitting under large-current density

J Colloid Interface Sci. 2023 May:637:104-111. doi: 10.1016/j.jcis.2023.01.069. Epub 2023 Jan 18.

Abstract

Transition metal nitride (TMNs) electrocatalysts have attracted tremendous attentions for their unique electron structure, high activity, and excellent stability. Herein, a two-dimensional (2D) graphene-like structured nickel-molybdenum nitride (Ni-MoN) on nickel foam (NF), is prepared via facile hydrothermal and following nitridation process. The as-prepared Ni-MoN-450 (pyrolysis at 450 °C) displays good hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performances in alkaline media. Only 22 mV and 117 mV are needed to achieve current densities of 10 mA cm-2 and 500 mA cm-2 in 1.0 M KOH, respectively, toward HER. The assembled two-electrode system, with the synthesized Ni-MoN-450 as the anode and cathode, exhibits good performance to achieve 1000 mA cm-2 in 1.0 M KOH + 25 °C and 6.0 M KOH + 80 °C. Moreover, it also presents long-term stability under large-current density, which verified its robust property.

Keywords: Electrocatalyst; Large-current density; Transition metal nitride; Water-splitting.