CPEB1-dependent disruption of the mRNA translation program in oocytes during maternal aging

Nat Commun. 2023 Jan 26;14(1):416. doi: 10.1038/s41467-023-35994-3.

Abstract

The molecular causes of deteriorating oocyte quality during aging are poorly defined. Since oocyte developmental competence relies on post-transcriptional regulations, we tested whether defective mRNA translation contributes to this decline in quality. Disruption in ribosome loading on maternal transcripts is present in old oocytes. Using a candidate approach, we detect altered translation of 3'-UTR-reporters and altered poly(A) length of the endogenous mRNAs. mRNA polyadenylation depends on the cytoplasmic polyadenylation binding protein 1 (CPEB1). Cpeb1 mRNA translation and protein levels are decreased in old oocytes. This decrease causes de-repression of Ccnb1 translation in quiescent oocytes, premature CDK1 activation, and accelerated reentry into meiosis. De-repression of Ccnb1 is corrected by Cpeb1 mRNA injection in old oocytes. Oocyte-specific Cpeb1 haploinsufficiency in young oocytes recapitulates all the translation phenotypes of old oocytes. These findings demonstrate that a dysfunction in the oocyte translation program is associated with the decline in oocyte quality during aging.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Aging*
  • Animals
  • Female
  • Maternal Age
  • Meiosis / genetics
  • Oocytes* / metabolism
  • Polyadenylation*
  • Protein Biosynthesis
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • mRNA Cleavage and Polyadenylation Factors* / genetics
  • mRNA Cleavage and Polyadenylation Factors* / metabolism

Substances

  • mRNA Cleavage and Polyadenylation Factors
  • RNA, Messenger