Evaluation of the Cyclic and Torsional Fatigue Resistance of Thermally Treated Hyflex CM versus Aurum Blue Nickel-titanium Rotary Instruments

Iran Endod J. 2021;16(2):109-113. doi: 10.22037/iej.v16i2.31006.

Abstract

Introduction: We aim to evaluate the cyclic and torsional fatigue resistance of two rotary instruments, Hyflex CM 25/0.06 (HCM) (Coletene-Whaledent, Allstetten, Switzerland) and Aurum Blue (AB) 25/0.06 (Meta-Biomed, Republic of Korea).

Methods and materials: Forty rotary instruments, HCM 25/0.06 and AB 25/0.06 (n=20 each) were used. The instruments were rotated in an artificial stainless steel canal with a 60° angle and a 5-mm radius of curvature (n=10) at body temperature (35°±1°C). The torsional test evaluated the torque and angle of rotation at failure of new instruments (n=10) in the portion 3 mm from the tip according to ISO 3630-1. The fractured surface of each fragment was observed by scanning electron microscopy. The data were analyzed using unpaired student's t- test, and the level of significance was set at 5%.

Results: AB 25/0.06 had significantly greater number of cycles to failure than HCM 25/0.06 (P<0.05). The torsional test showed there were no significant differences in the torsional strength and angular rotation to fracture between the groups (P>0.05).

Conclusion: Based on this in vitro study, AB 25/0.06 instrument was more resistant to cyclic fatigue than the HCM 25/0.06 instrument, suggested that these instruments are safer than HCM 25/0.06 for the preparation of severely curved canals. However; there was no significant difference in the torsional properties of the two instruments then appear to have similar performance during constricted canal preparation.

Keywords: Cyclic Fatigue; Instrumentation; Nickel-titanium; Rotary System.