Malignancy is often associated with therapeutic resistance and metastasis, usually arising after therapeutic treatment. These include radio- and chemo-therapies, which cause cancer cell death by inducing DNA double strand breaks (DSBs). However, it is still unclear how resistance to these DSBs is induced and whether it can be suppressed. Here, we show that DSBs induced by camptothecin (CPT) and radiation jeopardize genome stability in surviving cancer cells, ultimately leading to the development of resistance. Further, we show that cytosolic DNA, accumulating as a consequence of genomic destabilization, leads to increased cGAS/STING-pathway activation and, ultimately, increased cell migration, a precursor of metastasis. Interestingly, these genomic destabilization-associated phenotypes were suppressed by the PARP inhibitor Olaparib. Recognition of DSBs by Rad51 and genomic destabilization were largely reduced by Olaparib, while the DNA damage response and cancer cell death were effectively increased. Thus, Olaparib decreases the risk of therapeutic resistance and cell migration of cells that survive radio- and CPT-treatments.
Copyright: © 2023 Suzuki et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.