Self-recycling and partially conservative replication of mycobacterial methylmannose polysaccharides

Commun Biol. 2023 Jan 27;6(1):108. doi: 10.1038/s42003-023-04448-3.

Abstract

The steep increase in nontuberculous mycobacteria (NTM) infections makes understanding their unique physiology an urgent health priority. NTM synthesize two polysaccharides proposed to modulate fatty acid metabolism: the ubiquitous 6-O-methylglucose lipopolysaccharide, and the 3-O-methylmannose polysaccharide (MMP) so far detected in rapidly growing mycobacteria. The recent identification of a unique MMP methyltransferase implicated the adjacent genes in MMP biosynthesis. We report a wide distribution of this gene cluster in NTM, including slowly growing mycobacteria such as Mycobacterium avium, which we reveal to produce MMP. Using a combination of MMP purification and chemoenzymatic syntheses of intermediates, we identified the biosynthetic mechanism of MMP, relying on two enzymes that we characterized biochemically and structurally: a previously undescribed α-endomannosidase that hydrolyses MMP into defined-sized mannoligosaccharides that prime the elongation of new daughter MMP chains by a rare α-(1→4)-mannosyltransferase. Therefore, MMP biogenesis occurs through a partially conservative replication mechanism, whose disruption affected mycobacterial growth rate at low temperature.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Lipopolysaccharides
  • Mannosyltransferases
  • Methyltransferases
  • Mycobacterium* / genetics

Substances

  • methylmannoside
  • Lipopolysaccharides
  • Mannosyltransferases
  • Methyltransferases