Zeta diversity patterns in metabarcoded lotic algal assemblages as a tool for bioassessment

Ecol Appl. 2023 Apr;33(3):e2812. doi: 10.1002/eap.2812. Epub 2023 Feb 16.

Abstract

Assessments of the ecological health of algal assemblages in streams typically focus on measures of their local diversity and classify individuals by morphotaxonomy. Such assemblages are often connected through various ecological processes, such as dispersal, and may be more accurately assessed as components of regional-, rather than local-scale assemblages. With recent declines in the costs of sequencing and computation, it has also become increasingly feasible to use metabarcoding to more accurately classify algal species and perform regional-scale bioassessments. Recently, zeta diversity has been explored as a novel method of constructing regional bioassessments for groups of streams. Here, we model the use of zeta diversity to investigate whether stream health can be determined by the landscape diversity of algal assemblages. We also compare the use of DNA metabarcoding and morphotaxonomy classifications in these zeta diversity-based bioassessments of regional stream health. From 96 stream samples in California, we used various orders of zeta diversity to construct models of biotic integrity for multiple assemblages of diatoms, as well as hybrid assemblages of diatoms in combination with soft-bodied algae, using taxonomy data generated with both DNA sequencing as well as traditional morphotaxonomic approaches. We compared our ability to evaluate the ecological health of streams with the performance of multiple algal indices of biological condition. Our zeta diversity-based models of regional biotic integrity were more strongly correlated with existing indices for algal assemblages classified using metabarcoding compared to morphotaxonomy. Metabarcoding for diatoms and hybrid algal assemblages involved rbcL and 18S V9 primers, respectively. Importantly, we also found that these algal assemblages, independent of the classification method, are more likely to be assembled under a process of niche differentiation rather than stochastically. Taken together, these results suggest the potential for zeta diversity patterns of algal assemblages classified using metabarcoding to inform stream bioassessments.

Keywords: algae; biotic integrity; diatoms; diversity indices; eDNA; environmental DNA; landscape diversity; watershed health; zeta diversity.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Biodiversity
  • Diatoms*
  • Ecosystem*
  • Environmental Monitoring / methods
  • Humans
  • Plants
  • Rivers