MR Spin TomogrAphy in Time-domain ("MR-STAT") is quantitative MR technique in which multiple quantitative parameters are estimated from a single short scan by solving a large-scale non-linear optimization problem. In this work we extended the MR-STAT framework to non-Cartesian gradient trajectories. Cartesian MR-STAT and radial MR-STAT were compared in terms of time-efficiency and robustness in simulations, gel phantom measurements and in vivo measurements. In simulations, we observed that both Cartesian and radial MR-STAT are highly robust against undersampling. Radial MR-STAT does have a lower spatial encoding power because the outer corners of k-space are never sampled. However, especially in T2, this is compensated by a higher dynamic encoding power that comes from sampling the k-space center with each readout. In gel phantom measurements, Cartesian MR-STAT was observed to be robust against overfitting whereas radial MR-STAT suffered from high-frequency artefacts in the parameter maps at later iterations. These artefacts are hypothesized to be related to hardware imperfections and were (partially) suppressed with image filters. The time-efficiencies were higher for Cartesian MR-STAT in all vials. In-vivo, the radial reconstruction again suffered from overfitting artefacts. The robustness of Cartesian MR-STAT over the entire range of experiments may make it preferable in a clinical setting, despite radial MR-STAT resulting in a higher T1 time-efficiency in white matter.
Keywords: Efficiency analysis; MR-STAT; Non-linear optimization; Quantitative MR; Radial MRI.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.