Introduction: Naked oat (Avena sativa L.), is an important miscellaneous grain crop in China, which is rich in protein, amino acids, fat and soluble dietary fiber. The demand for functional foods is gradually increasing as living standards rise, and the output of minor cereals in China is increasing annually. The planting layout of naked oat is scattered and lacks planning, which seriously restricts the development of the naked oat industry. The increase in miscellaneous grain production will not only be impacted by cultivation methods and management techniques, but the potential impact of global climate change needs to be considered. North China is the main area for naked oat production, worldwide.
Methods: In this study, the potential distribution range of naked oat in North China was forecast based on historical distribution data and the Maxent model under climate change conditions. The performance of the model was relatively high.
Results: The results indicated that the most suitable area for the potential geographic distribution of naked oat in North China was 27.89×104 km2, including central and northeastern Shanxi, and northeastern and western Hebei and Beijing, gradually moving northward. The core suitable area increased, and the distribution of naked oat had an obvious regional response to climate warming; the main environmental factors affecting the potential geographic distribution were precipitation factor variables (precipitation seasonality (variation coefficient)), terrain factor variables (elevation) and temperature factor variables (temperature seasonality (Standard Deviation*100)).
Discussion: In this study, the Maxent model was used to analyze and predict suitable areas for naked oat in North China, and the distribution of suitable areas was accurately divided, and the main climatic factors affecting the distribution of naked oat were identified. This research provides data support and theoretical support for the optimal planting zone of naked oat in North China.
Keywords: Maxent; North China; climate change; distribution; naked oat.
Copyright © 2023 Qin, Gao, Feng, Jin, Wang and Cheng.