The electrochemical nitrate reduction reaction (NitRR) affords a sustainable way for nitrate mitigation and ammonia synthesis, but there are still some problems such as poor nitrate conversion, low ammonia selectivity, and slow reaction kinetics. A clear structure-performance relationship is essential for designing efficient catalysts and understanding the reaction mechanisms. Herein, ultrathin nickel metal-organic framework (Ni-MOF) nanosheets supported on Ni foam featuring a well-defined stable structure, large electrochemically active surface area, and low electron transport resistance were prepared by a one-step solvothermal process. At -1.4 V, the nitrate reduction, rate constant, ammonia selectivity, and yield reached 96.4%, 0.448 h-1, 80%, and 110.13 ug·h-1·cm-2, respectively. Experimental and theoretical studies demonstrated that the hydroxyl-ligated Ni atoms exhibited higher nitrate adsorption properties and lower activation energy towards NitRR compared to carboxylic acid-ligated Ni atoms. Mechanism investigations revealed a nitrate-to-ammonia reaction pathway involving multiple intermediate species on Ni-MOF nanosheet catalysts. This work offers a new avenue to construct highly efficient electrocatalysts for the selective transformation of nitrate to valuable ammonia.
Keywords: Ammonia synthesis; Chemical microenvironment; Electrochemical nitrate reduction; Ni; Two-dimensional metal–organic framework; Ultrathin nanosheet.
Copyright © 2023 Elsevier Inc. All rights reserved.