β-adrenergic receptors (βARs) belong to a key molecular targets that regulate the most important processes occurring in the human organism. Although over the last decades a zebrafish model has been developed as a model complementary to rodents in biomedical research, the role of β2AR in regulation of pathological and toxicological effects remains to elucidate. Therefore, the study aimed to clarify the role of β2AR with a particular emphasis on the distinct role of subtypes A and B of zebrafish β2AR. As model compounds selective β2AR agonists - (R,R)-fenoterol ((R,R)-Fen) and its new derivatives: (R,R)-4'-methoxyfenoterol ((R,R)-MFen) and (R,R)-4'-methoxy-1-naphtylfenoterol ((R,R)-MNFen) - were tested. We described dose-dependent changes observed after fenoterols exposure in terms of general toxicity, cardiotoxicity and neurobehavioural responses. Subsequently, to better characterise the role of β2-adrenergic stimulation in zebrafish, we have performed a series of molecular docking simulations. Our results indicate that (R,R)-Fen displays the highest affinity for subtype A of zebrafish β2AR and β2AAR might be involved in pigment depletion. (R,R)-MFen shows the lowest affinity for zebrafish β2ARs out of the tested fenoterols and this might be associated with its cardiotoxic and anxiogenic effects. (R,R)-MNFen displays the highest affinity for subtype B of zebrafish β2AR and modulation of this receptor might be associated with the development of malformations, increases locomotor activity and induces a negative chronotropic effect. Taken together, the presented data offer insights into the functional responses of the zebrafish β2ARs confirming their intraspecies conservation, and support the translation of the zebrafish model in pharmacological and toxicological research.
Keywords: Anxiety behavior; G protein-coupled receptor; Homology modeling; Physiology; Toxicology; Zebrafish.
Copyright © 2023 The Authors. Published by Elsevier Masson SAS.. All rights reserved.