Though substantial research has been conducted on possible historical, physiological, and symbiotic mechanisms that permit monodominance to occur within tropical lowland rainforests, less is known about the successional rates at which monodominance exerts itself on surrounding forest structures. Here we extend efforts to evaluate the longitudinal dynamics of Gilbertiodendron dewevrei-dominated forest in Central Africa by considering this species' spatial dynamics. Using three 10-ha censused field plots measured across three time periods, we present the first quantitative estimates of the spatial propagation of Gilbertiodendron into adjacent mixed species forest. Using three analytical strategies, we demonstrate that Gilbertiodendron is increasing in dominance and that monodominant forest patches are expanding into the surrounding forest at a statistically significant rate. The rates of successional advance vary by patch and direction, but average 0.31 m year-1, with speeds greatest in the direction of the prevailing winds. We show that the advancement of Gilbertiodendron is significantly slower than documented rates from other forest ecotones across Central Africa. When paired with stress tolerance traits and ectomycorrhizal associations, these findings help to clarify the means by which Gilbertiodendron dewevrei gains dominance in otherwise species-diverse regions.
Copyright: © 2023 Glick et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.