pH-/Redox-Responsive Nanodroplet Combined with Ultrasound-Targeted Microbubble Destruction for the Targeted Treatment of Drug-Resistant Triple Negative Breast Cancer

ACS Appl Mater Interfaces. 2023 Feb 9. doi: 10.1021/acsami.2c20478. Online ahead of print.

Abstract

Multiple drug resistance (MDR) exists in divergent cancers including triple negative breast cancer (TNBC) and partly results in the resistance to many first-line anti-cancer agents, bringing a big challenge to TNBC management. To develop novel TNBC therapeutics, in our study, a hyaluronic acid (HA)-carboxymethyl chitosan (CMC) conjugate linked via a disulfide-bond (HA-SS-CMC, HSC) was synthesized to fabricate nanodroplets (NDs). The NDs encapsulating doxorubicin (DOX) and perfluorohexane (DOX-HSC-NDs) were prepared via a homogenization/emulsification strategy and exhibited not only high biocompatibility but also noticeable tumor cell targeting ability and dual pH/redox responsiveness. Besides, DOX-HSC-NDs can be used as a contrast-enhanced ultrasound imaging agent for specific tumor imaging. DOX-HSC-NDs in combination with ultrasound targeted microbubble destruction could improve intracellular drug aggregation and retention of MDR cells and work against multiple mechanisms of drug resistance through synergistic strategies, including up-regulating the reactive oxygen species (ROS) level, promoting apoptosis, and scavenging glutathione, while reducing the expression levels of P-glycoprotein and inhibiting the epithelial-mesenchymal transition. This combination strategy showed protective effects against TNBC in both MDA-MB-231/ADR cells and tumor-bearing mice. Our study for the first time developed and reported the ultrasound-augmented HSC-NDs as the DOX nanocarrier and provided scientific evidence to support the future application of DOX-HSC-NDs as a potential TNBC therapy.

Keywords: dual pH-/redox-responsive; multiple drug resistance; theranostics; triple negative breast cancer; ultrasound-targeted microbubble destruction.