Hypoxia has been identified as a major factor in the pathogenesis of adipose tissue inflammation, which is a hallmark of obesity and obesity-linked type 2 diabetes mellitus. In this study, we have investigated the impact of hypoxia (1% oxygen) on the physiology and metabolism of 3T3-L1 adipocytes, a widely used cell culture model of adipose. Specifically, we applied parallel labeling experiments, isotopomer spectral analysis, and 13C-metabolic flux analysis to quantify the impact of hypoxia on adipogenesis, de novo lipogenesis and metabolic flux reprogramming in adipocytes. We found that 3T3-L1 cells can successfully differentiate into lipid-accumulating adipocytes under hypoxia, although the production of lipids was reduced by about 40%. Quantitative flux analysis demonstrated that short-term (1 day) and long-term (7 days) exposure to hypoxia resulted in similar reprogramming of cellular metabolism. Overall, we found that hypoxia: 1) reduced redox and energy generation by more than 2-fold and altered the patterns of metabolic pathway contributions to production and consumption of energy and redox cofactors; 2) redirected glucose metabolism from pentose phosphate pathway and citric acid cycle to lactate production; 3) rewired glutamine metabolism, from net glutamine production to net glutamine catabolism; 4) suppressed branched chain amino acid consumption; and 5) reduced biosynthesis of odd-chain fatty acids and mono-unsaturated fatty acids, while synthesis of saturated even-chain fatty acids was not affected. Together, these results highlight the profound impact of extracellular microenvironment on adipocyte metabolic activity and function.
Keywords: 3T3-L1 cells; Adipocytes; Differentiation; Hypoxia; Metabolism; de novo lipogenesis.
Copyright © 2023 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.