Design, Synthesis, and Antiproliferative Activity of New 5-Chloro-indole-2-carboxylate and Pyrrolo[3,4- b]indol-3-one Derivatives as Potent Inhibitors of EGFRT790M/BRAFV600E Pathways

Molecules. 2023 Jan 28;28(3):1269. doi: 10.3390/molecules28031269.

Abstract

Mutant EGFR/BRAF pathways are thought to be crucial targets for the development of anticancer drugs since they are over-activated in several malignancies. We present here the development of a novel series of 5-chloro-indole-2-carboxylate 3a-e, 4a-c and pyrrolo[3,4-b]indol-3-ones 5a-c derivatives as potent inhibitors of mutant EGFR/BRAF pathways with antiproliferative activity. The cell viability assay results of 3a-e, 4a-c, and 5a-c revealed that none of the compounds tested were cytotoxic, and that the majority of those tested at 50 µM had cell viability levels greater than 87%. Compounds 3a-e, 4a-c, and 5a-c had significant antiproliferative activity with GI50 values ranging from 29 nM to 78 nM, with 3a-e outperforming 4a-c and 5a-c in their inhibitory actions against the tested cancer cell lines. Compounds 3a-e were tested for EGFR inhibition, with IC50 values ranging from 68 nM to 89 nM. The most potent derivative was found to be the m-piperidinyl derivative 3e (R = m-piperidin-1-yl), with an IC50 value of 68 nM, which was 1.2-fold more potent than erlotinib (IC50 = 80 nM). Interestingly, all the tested compounds 3a-e had higher anti-BRAFV600E activity than the reference erlotinib but were less potent than vemurafenib, with compound 3e having the most potent activity. Moreover, compounds 3b and 3e showed an 8-fold selectivity index toward EGFRT790M protein over wild-type. Additionally, molecular docking of 3a and 3b against BRAFV600E and EGFRT790M enzymes revealed high binding affinity and active site interactions compared to the co-crystalized ligands. The pharmacokinetics properties (ADME) of 3a-e revealed safety and good pharmacokinetic profile.

Keywords: BRAFV600E; anticancer; indole; melanoma; mutant EGFR; pyrrole.

MeSH terms

  • Antineoplastic Agents* / chemistry
  • Cell Line, Tumor
  • Cell Proliferation
  • Drug Screening Assays, Antitumor
  • ErbB Receptors / metabolism
  • Erlotinib Hydrochloride / pharmacology
  • Humans
  • Lung Neoplasms*
  • Molecular Docking Simulation
  • Molecular Structure
  • Mutation
  • Protein Kinase Inhibitors / chemistry
  • Proto-Oncogene Proteins B-raf
  • Structure-Activity Relationship

Substances

  • ErbB Receptors
  • indole-2-carboxylate
  • Erlotinib Hydrochloride
  • Protein Kinase Inhibitors
  • Antineoplastic Agents
  • BRAF protein, human
  • Proto-Oncogene Proteins B-raf
  • EGFR protein, human