Cancer-associated fibroblasts (CAFs) are heterogeneous stromal cells present in the tumor microenvironment (TME), which play a critical role in gastric cancer (GC) progression. Here, we examined a subset of CAFs with high podoplanin (PDPN) expression, which is correlated with tumor metastasis and poor survival in GC patients. Animal models of gastric cancer liver metastasis monitored by micro-PET/CT confirmed that periostin (POSTN) derived from PDPN(+) CAFs regulated CAFs' pro-migratory ability. Mechanistically, PDPN(+) CAFs secreted POSTN to modulate cancer stem cells (CSCs) through FAK/AKT phosphorylation. Furthermore, POSTN could also activate FAK/YAP signaling in GC cells to produce increased amounts of IL-6, which in turn induced phosphorylation of PI3K/AKT in PDPN(+) CAFs. Prolonged PI3K/AKT pathway activation in PDPN(+) CAFs maintains the production of POSTN and the effect on CSC enrichment and GC cell migration. In conclusion, our study demonstrated a positive feedback loop between PDPN(+) CAFs and CSCs during GC progression and suggested a selective target for GC treatment.
Keywords: PI3K/AKT pathway; cancer stem cell; cancer-associated fibroblast; periostin; podoplanin.
© 2023 Wiley Periodicals LLC.