Bipolar disorder (BD) is a severe mental illness associated with alterations in brain organization. Neuroimaging studies have generated a large body of knowledge regarding brain morphological and functional abnormalities in BD. Current advances in the field have focussed on the need for more precise neuroimaging biomarkers. Here we present a selective overview of precision neuroimaging biomarkers for BD, focussing on personalized metrics and novel neuroimaging methods aiming to provide mechanistic insights into the brain alterations associated with BD. The evidence presented covers (a) machine learning techniques applied to neuroimaging data to differentiate patients with BD from healthy individuals or other clinical groups; (b) the 'brain-age-gap-estimation (brainAGE), which is an individualized measure of brain health; (c) diffusional kurtosis imaging (DKI), neurite orientation dispersion and density imaging (NODDI) and Positron Emission Tomography (PET) techniques that open new opportunities to measure microstructural changes in neurite/synaptic integrity and function.
Keywords: DKI; NODDI; Neuroimaging; bipolar disorders; brainAGE; machine learning; precision biomarkers.