CC16 augmentation reduces exaggerated COPD-like disease in Cc16-deficient mice

JCI Insight. 2023 Mar 22;8(6):e130771. doi: 10.1172/jci.insight.130771.

Abstract

Low Club Cell 16 kDa protein (CC16) plasma levels are linked to accelerated lung function decline in patients with chronic obstructive pulmonary disease (COPD). Cigarette smoke-exposed (CS-exposed) Cc16-/- mice have exaggerated COPD-like disease associated with increased NF-κB activation in their lungs. It is unclear whether CC16 augmentation can reverse exaggerated COPD in CS-exposed Cc16-/- mice and whether increased NF-κB activation contributes to the exaggerated COPD in CS-exposed Cc16-/- lungs. CS-exposed WT and Cc16-/- mice were treated with recombinant human CC16 (rhCC16) or an NF-κB inhibitor versus vehicle beginning at the midpoint of the exposures. COPD-like disease and NF-κB activation were measured in the lungs. RhCC16 limited the progression of emphysema, small airway fibrosis, and chronic bronchitis-like disease in WT and Cc16-/- mice partly by reducing pulmonary inflammation (reducing myeloid leukocytes and/or increasing regulatory T and/or B cells) and alveolar septal cell apoptosis, reducing NF-κB activation in CS-exposed Cc16-/- lungs, and rescuing the reduced Foxj1 expression in CS-exposed Cc16-/- lungs. IMD0354 treatment reduced exaggerated lung inflammation and rescued the reduced Foxj1 expression in CS-exposed Cc16-/- mice. RhCC16 treatment reduced NF-κB activation in luciferase reporter A549 cells. Thus, rhCC16 treatment limits COPD progression in CS-exposed Cc16-/- mice partly by inhibiting NF-κB activation and represents a potentially novel therapeutic approach for COPD.

Keywords: Immunology; Inflammation; Innate immunity; NF-kappaB.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Humans
  • Lung / metabolism
  • Mice
  • NF-kappa B / metabolism
  • Nicotiana
  • Pneumonia* / metabolism
  • Pulmonary Disease, Chronic Obstructive* / metabolism
  • Pulmonary Emphysema* / metabolism

Substances

  • NF-kappa B
  • Scgb1a1 protein, mouse