Red blood cell (RBC) deformability is a vital biophysical property that dictates the ability of these cells to repeatedly squeeze through small capillaries in the microvasculature. This capability is known to differ between individuals and degrades due to natural aging, pathology, and cold storage. There is great interest in measuring RBC deformability because this parameter is a potential biomarker of RBC quality for use in blood transfusions. Measuring this property from microscopy images would greatly reduce the effort required to acquire this information, as well as improve standardization across different centers. This dataset consists of live cell microscopy images of RBC samples from 10 healthy donors. Each RBC sample is sorted into fractions based on deformability using the microfluidic ratchet device. Each deformability fraction is imaged in microwell plates using a Nikon CFI S Plan Fluor ELWD 40 × objective and a Nikon DS-Qi2 CMOS camera on a Nikon Ti-2E inverted microscope. This data could be reused to develop deep learning algorithms to associate live cell images with cell deformability.
Keywords: Computer vision; Dataset; Deep learning; Deformability; Machine learning; Microfluidics; Optical microscopy; Red blood cells.
© 2023 The Author(s).