The KamLAND-Zen experiment has provided stringent constraints on the neutrinoless double-beta (0νββ) decay half-life in ^{136}Xe using a xenon-loaded liquid scintillator. We report an improved search using an upgraded detector with almost double the amount of xenon and an ultralow radioactivity container, corresponding to an exposure of 970 kg yr of ^{136}Xe. These new data provide valuable insight into backgrounds, especially from cosmic muon spallation of xenon, and have required the use of novel background rejection techniques. We obtain a lower limit for the 0νββ decay half-life of T_{1/2}^{0ν}>2.3×10^{26} yr at 90% C.L., corresponding to upper limits on the effective Majorana neutrino mass of 36-156 meV using commonly adopted nuclear matrix element calculations.