Adolescence is a critical period when cognitive control is rapidly maturing across several core dimensions. Here, we evaluated how healthy adolescents (13-17 years of age, n = 44) versus young adults (18-25 years of age, n = 49) differ across a series of cognitive assessments with simultaneous electroencephalography (EEG) recordings. Cognitive tasks included selective attention, inhibitory control, working memory, as well as both non-emotional and emotional interference processing. We found that adolescents displayed significantly slower responses than young adults specifically on the interference processing tasks. Evaluation of EEG event-related spectral perturbations (ERSPs) on the interference tasks showed that adolescents consistently had greater event-related desynchronization in alpha/beta frequencies in parietal regions. Midline frontal theta activity was also greater in the flanker interference task in adolescents, suggesting greater cognitive effort. Parietal alpha activity predicted age-related speed differences during non-emotional flanker interference processing, and frontoparietal connectivity, specifically midfrontal theta - parietal alpha functional connectivity predicted speed effects during emotional interference. Overall, our neuro-cognitive results illustrate developing cognitive control in adolescents particularly for interference processing, predicted by differential alpha band activity and connectivity in parietal brain regions.
Keywords: Connectivity; EEG; Emotion; Interference processing; Parietal alpha; Response speed.
Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.