The lockdowns held due to the COVID-19 pandemic conducted to changes in air quality. This study aimed to understand the variability of PM2.5 levels and composition in an urban-industrial area of the Lisbon Metropolitan Area and to identify the contribution of the different sources. The composition of PM2.5 was assessed for 24 elements (by PIXE), secondary inorganic ions and black carbon. The PM2.5 mean concentration for the period (December 2019 to November 2020) was 13 ± 11 μg.m-3. The most abundant species in PM2.5 were BC (19.9%), SO4 2- (15.4%), NO3 - (11.6%) and NH4 + (5.3%). The impact of the restrictions imposed by the COVID-19 pandemic on the PM levels was found by comparison with the previous six years. The concentrations of all the PM2.5 components, except Al, Ba, Ca, Si and SO4 2-, were significantly higher in the winter/pre-confinement than in post-confinement period. A total of seven sources were identified by Positive Matrix Factorisation (PMF): soil, secondary sulphate, fuel-oil combustion, sea, vehicle non-exhaust, vehicle exhaust, and industry. Sources were greatly influenced by the restrictions imposed by the COVID-19 pandemic, with vehicle exhaust showing the sharpest decrease. Secondary sulphate predominated in summer/post-confinement. PM2.5 levels and composition also varied with the types of air mass trajectories.
Keywords: PIXE; Particulate matter; Positive Matrix Factorisation; Pre- and post-confinement periods; SARS-CoV-2; Urban-industrial area.
© 2023 The Authors.