Glucagon Acting at the GLP-1 Receptor Contributes to β-Cell Regeneration Induced by Glucagon Receptor Antagonism in Diabetic Mice

Diabetes. 2023 May 1;72(5):599-610. doi: 10.2337/db22-0784.

Abstract

Dysfunction of glucagon-secreting α-cells participates in the progression of diabetes, and glucagon receptor (GCGR) antagonism is regarded as a novel strategy for diabetes therapy. GCGR antagonism upregulates glucagon and glucagon-like peptide 1 (GLP-1) secretion and, notably, promotes β-cell regeneration in diabetic mice. Here, we aimed to clarify the role of GLP-1 receptor (GLP-1R) activated by glucagon and/or GLP-1 in the GCGR antagonism-induced β-cell regeneration. We showed that in db/db mice and type 1 diabetic wild-type or Flox/cre mice, GCGR monoclonal antibody (mAb) improved glucose control, upregulated plasma insulin level, and increased β-cell area. Notably, blockage of systemic or pancreatic GLP-1R signaling by exendin 9-39 (Ex9) or Glp1r knockout diminished the above effects of GCGR mAb. Furthermore, glucagon-neutralizing antibody (nAb), which prevents activation of GLP-1R by glucagon, also attenuated the GCGR mAb-induced insulinotropic effect and β-cell regeneration. In cultured primary mouse islets isolated from normal mice and db/db mice, GCGR mAb action to increase insulin release and to upregulate β-cell-specific marker expression was reduced by a glucagon nAb, by the GLP-1R antagonist Ex9, or by a pancreas-specific Glp1r knockout. These findings suggest that activation of GLP-1R by glucagon participates in β-cell regeneration induced by GCGR antagonism in diabetic mice.

Article highlights: Glucagon receptor (GCGR) antagonism promotes β-cell regeneration in type 1 and type 2 diabetic mice and in euglycemic nonhuman primates. Glucagon and glucagon-like peptide 1 (GLP-1) can activate the GLP-1 receptor (GLP-1R), and their levels are upregulated following GCGR antagonism. We investigated whether GLP-1R activated by glucagon and/or GLP-1 contributed to β-cell regeneration induced by GCGR antagonism. We found that blockage of glucagon-GLP-1R signaling attenuated the GCGR monoclonal antibody-induced insulinotropic effect and β-cell regeneration in diabetic mice. Our study reveals a novel mechanism of β-cell regeneration and uncovers the communication between α-cells and β-cells in regulating β-cell mass.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antibodies, Monoclonal / metabolism
  • Antibodies, Monoclonal / pharmacology
  • Diabetes Mellitus, Experimental* / metabolism
  • Glucagon / metabolism
  • Glucagon-Like Peptide 1 / metabolism
  • Glucagon-Like Peptide-1 Receptor / genetics
  • Glucagon-Like Peptide-1 Receptor / metabolism
  • Glucagon-Secreting Cells* / metabolism
  • Insulin / metabolism
  • Mice
  • Receptors, Glucagon / genetics
  • Regeneration

Substances

  • Glucagon
  • Receptors, Glucagon
  • Glucagon-Like Peptide-1 Receptor
  • Glucagon-Like Peptide 1
  • Insulin
  • Antibodies, Monoclonal