Macromolecular Crowding Is Surprisingly Unable to Deform the Structure of a Model Biomolecular Condensate

Biology (Basel). 2023 Jan 25;12(2):181. doi: 10.3390/biology12020181.

Abstract

The crowded interior of a living cell makes performing experiments on simpler in vitro systems attractive. Although these reveal interesting phenomena, their biological relevance can be questionable. A topical example is the phase separation of intrinsically disordered proteins into biomolecular condensates, which is proposed to underlie the membrane-less compartmentalization of many cellular functions. How a cell reliably controls biochemical reactions in compartments open to the compositionally-varying cytoplasm is an important question for understanding cellular homeostasis. Computer simulations are often used to study the phase behavior of model biomolecular condensates, but the number of relevant parameters increases as the number of protein components increases. It is unfeasible to exhaustively simulate such models for all parameter combinations, although interesting phenomena are almost certainly hidden in their high-dimensional parameter space. Here, we have studied the phase behavior of a model biomolecular condensate in the presence of a polymeric crowding agent. We used a novel compute framework to execute dozens of simultaneous simulations spanning the protein/crowder concentration space. We then combined the results into a graphical representation for human interpretation, which provided an efficient way to search the model's high-dimensional parameter space. We found that steric repulsion from the crowder drives a near-critical system across the phase boundary, but the molecular arrangement within the resulting biomolecular condensate is rather insensitive to the crowder concentration and molecular weight. We propose that a cell may use the local cytoplasmic concentration to assist the formation of biomolecular condensates, while relying on the dense phase to reliably provide a stable, structured, fluid milieu for cellular biochemistry despite being open to its changing environment.

Keywords: biomolecular condensate; coarse-grained simulation; crowding; event-based computing; hardware-accelerated simulation; liquid–liquid phase separation.

Grants and funding

J.C.S. was supported by funding to the Blue Brain Project, a research center of the École polytechnique fédérale de Lausanne (EPFL), from the Swiss government’s ETH Board of the Swiss Federal Institutes of Technology. D.B.T. and A.D.B. were supported by the UK EPSRC Grant EP/N031768/1 (POETS).