Twelve Triticum aestivum L. spp. aestivum varieties with pigmented grain, namely one red, six purple, three blue, and two black, were grown in open fields over two consecutive years and screened to investigate their risk to the accumulation of multiple Fusarium-related mycotoxins. Deoxynivalenol (DON) and its modified forms DON3Glc, 3Ac-DON, 15Ac-DON, and T-2, HT-2, ZEN, and Enniatin B were quantified by means of UHPLC-MS/MS, along with 14 different cyanidin, petunidin, delphinidin, pelargonidin, peonidin, and malvidin glycosides. A significant strong influence effect of the harvesting year (p = 0.0002) was noticed for DON content, which was more than doubled between harvesting years growing seasons (mean of 3746 µg kg-1 vs. 1463 µg kg-1). In addition, a striking influence of varieties with different grain colour on DON content (p < 0.0001) emerged in combination with the harvesting year (year×colour, p = 0.0091), with blue grains being more contaminated (mean of 5352 µg kg-1) and red grain being less contaminated (mean of 715 µg kg-1). The trend was maintained between the two harvesting years despite the highly variable absolute mycotoxin content. Varieties accumulating anthocyanins in the pericarp (purple coloration) had significantly lower DON content compared to those in which aleurone was involved (blue coloration).
Keywords: UHPLC-MS/MS; biotic stress; deoxynivalenol; pigmented wheat; secondary metabolism.