Brown Seaweed Extract (BSE) Application Influences Auxin- and ABA-Related Gene Expression, Root Development, and Sugar Yield in Beta vulgaris L

Plants (Basel). 2023 Feb 13;12(4):843. doi: 10.3390/plants12040843.

Abstract

The molecular and phenotypic effects of a brown seaweed extract (BSE) were assessed in sugar beet (Beta vulgaris L.). Transcript levels of BSE-treated and untreated plants were studied by RNA-seq and validated by quantitative real-time PCR analysis (RT-qPCR). Root morphology, sugar yield, and processing quality traits were also analyzed to better elucidate the treatment effects. RNA-seq revealed 1019 differentially expressed genes (DEGs) between the BSE-treated and untreated plants. An adjusted p-value < 0.1 and an absolute value of log2 (fold change) greater than one was used as criteria to select the DEGs. Gene ontology (GO) identified hormone pathways as an enriched biological process. Six DEGs involved in auxin and ABA pathways were validated using RT-qPCR. The phenotypic characterization indicated that BSE treatment led to a significant increase (p < 0.05) in total root length and the length of fine roots of plants grown under hydroponics conditions. The sugar yield of plants grown under field conditions was higher (p < 0.05) in the treated field plots compared with the control treatment, without impacting the processing quality. Our study unveiled the relevant effects of BSE application in regulating auxin- and ABA-related gene expression and critical traits related to sugar beet development and yield.

Keywords: RNA-seq; RT-qPCR; molecular pathways; root traits; sugar beet; sugar yield.

Grants and funding

The study was carried out within the Agritech National Research Center and received funding from the European Union Next-Generation EU (PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR)—MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.4—D.D. 1032 17/06/2022, CN00000022). Our study represents a position paper related to: (1) Spoke 1 “Plant and animal genetic resources and adaptation to climate changes” and a baseline for the fulfillment of the milestones within task 1.2.4 titled “Profiling plant-microbial associations and modulating these interactions by biostimulant treatments to enhance the ability of plants to cope with environmental stressors”. (2) Spoke 7 “Integrated models for the development of marginal areas to promote multifunctional production systems enhancing agroecological and socio-economic sustainability” and a baseline for the fulfillment of the milestones within Task 7.1.2 titled “Strategies for development of the agricultural and forestry systems, plant and animal biodiversity enhancement also at landscape level in marginal areas”. This manuscript reflects only the authors’ views and opinions, neither the European Union nor the European Commission can be considered responsible for them. This study was also funded by Veneto Region in the framework of the PSR 2014–2020 (Project: “Implementation and validation of innovative plant protection methods to increase the environmental sustainability of organic and sugar beet production”). Authors SR and MB were supported by Cariparo Foundation and PON Research &. Competitiveness MIUR-CUP C93H20000320007, respectively. This manuscript reflects only the authors’ views and opinions, neither the European Union nor the European Commission can be considered responsible for them.