Knowledge of the spatial distribution of European chestnut (Castanea sativa Mill.) cultivar diversity is essential for managing and conserving the genetic resources of this fruit tree species in Southern Italy. To this goal, the present work investigated the feasibility of mapping, through spatial representation, the distribution of genetic diversity of traditional chestnut varieties in the area of the Roccamonfina Regional Park in the Campania Region. After Principal Coordinates Analysis (PCoA) of molecular-genetic data, chestnuts formed varietal groups in a leopard spot on PCoA plots with a relatively high degree of genetic diversity. Successively, a Geographic Information System (GIS) tool utilized these molecular-genetic data to create a genetic divergence surface by geospatial interpolation on the geographic map of the Regional Park corresponding to each chestnut variety. The regions containing more biodiversity richness resulted in differentially colored from those containing cultivars less genetically distant from each other; thus, the area in study was consistently colored according to the allelic richness as evaluated by molecular-genetic markers. The combined use of tools for molecular and spatial analysis allowed for drafting genetic landscapes with the aim of extracting useful information for the safeguarding of the chestnut biodiversity at risk.
Keywords: DNA analysis; Geographic Information System (GIS); agrobiodiversity; genetic distance; landscape genetics.