In this study, a new electrochemical sensor was designed based on a hybrid of polyamide (PA) and chromotropic acid (CA) nanofibers electrospun on a glassy carbon electrode (GCE) configured as PANFs-CANFs/GCE. The electrochemical response of this sensor showed an excellent electrochemical activity for the detection of Hg2+ ions using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods. The proposed sensor exhibited the prominent electrocatalytic value of (α = 0.60, Log Ks = 3.45 s-1 and Γ = 3.30 × 10 -9 mmol/cm2) as a result of PANFs-CANFs/GCE response to Hg2+ ions. The recommended sensor also demonstrated a linear portion in the calibration curve over the concentration range of 30 to 450 nM with the limit of detection (LOD) and limit of quantitation (LOQ) of 9.98 nM and 29.97 nM, respectively. The fabricated sensor revealed reproducible and repeatable responses with a high level of stability. Therefore, we highly recommend this new electro-spun based sensor for quantifying Hg2+ in drinking water and canned fish samples with the accurate and precise results and no side interferences.
Keywords: Chromotropic acid; Cyclic voltammetry; Differential pulse voltammetry; Electrospun; Mercury ions; Modified electrodes; Polyamide.
Copyright © 2023 Elsevier Ltd. All rights reserved.