Biomass-derived isosorbide (ISB) is a promising alternative to petroleum-based monomers in industrial plastics. In this study, ISB-based thermoplastic polyurethanes (ISB-TPUs) were prepared using ISB as a biomass chain extender, and the effects of the preparation route on the structural and physical properties of the resultant polymers were investigated. Prepolymer methods were more suitable for obtaining the desired molecular weights (MWs) and physical properties of ISB-TPUs than the one-shot method. The presence of the solvent and catalyst in the prepolymer step had significant effects on the structural and physical properties of the resultant polymer. Among several prepolymer conditions, the solvent- and catalyst-free methods were the most suitable for preparing commercial-level ISB-TPUs, with number- and weight-average MWs (M n and M w ) of 32,881 and 90,929 g mol-1, respectively, and a tensile modulus (E) and ultimate tensile strength (UTS) of 12.0 and 40.2 MPa, respectively. In comparison, the presence of a catalyst in the prepolymer step resulted in lower MWs and mechanical properties (81,033 g mol-1 and 18.3 MPa of M w and UTS, respectively). The co-existence of the catalyst/solvent led to a further decline in the properties of ISB-TPUs (26,506 and 10.0 MPa of M w and UTS, respectively). ISB-TPU prepared via the solvent- and catalyst-free methods exhibited remarkable elastic recovery when subjected to up to 1000% strain in mechanical cycling tests. Rheological characterization confirmed the thermo-reversible phase change (thermoplasticity) of the polymer.
Supplementary information: The online version contains supplementary material available at 10.1007/s13233-023-00125-w.
Keywords: Bioplastic; Isosorbide; Rheology; Thermoplastic polyurethane.
© The Author(s), under exclusive licence to The Polymer Society of Korea 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.