This paper proposes a method to assist patients in finding the most appropriate doctor for online medical consultation. To do that, it constructs an online doctor selection decision-making method that considers the correlation attributes, in which the measure of attribute correlation is derived from the history real decision data. To combine public and personal preference with correlated attributes, it proposes a Choquet integral based comprehensive online doctor ranking method. In detail, a two stage classification model based on BERT (Bidirectional Encoder Representations from Transformers) is used to extract service features from unstructured text reviews. Then, 2-additive fuzzy measure is adopted to represent the patient public group aggregated attribute preference. Next, a novel optimization model is proposed to combine the public preference and personal preference. Finally, a case study of dxy.com is carried out to illustrate the procedure of the method. The comparison result between proposed method and other traditional MADM (multi-attribute decision-making) methods prove its rationality.
Keywords: 2-additive fuzzy measure; Choquet integral; Doctor selection; Multi-attribute decision-making; Online reviews; Sentiment analysis.
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.