Monitoring core body temperature (CBT) allows observation of heat stress and thermal comfort in various environments. By introducing a Peltier element, we improved the zero-heat-flux core body thermometer for hot environments. In this study, we performed a theoretical analysis, designed a prototype probe, and evaluated its performance through simulator experiments with human subjects. The finite element analysis shows that our design can reduce the influence of external temperature variations by as much as 1%. In the simulator experiment, the prototype probe could measure deep temperatures within an error of less than 0.1 °C, regardless of outside temperature change. In the ergometer experiment with four subjects, the average difference between the prototype probe and a commercial zero-heat-flux probe was +0.1 °C, with a 95% LOA of -0.23 °C to +0.21 °C. In the dome sauna test, the results measured in six of the seven subjects exhibited the same trend as the reference temperature. These results show that the newly developed probe with the Peltier module can measure CBT accurately, even when the ambient temperature is higher than CBT up to 42 °C.
Keywords: Peltier module; core body temperature; core body thermometer; hot environment solution; zero-heat-flux method.